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Machine Learning Algorithm Mind Map
Many packages are available to build and interpret machine learning 
algorithms:  the challenge in ML is data, not tools

And many others…

Many machine 
learning 
algorithms use the 
same underlying 
geometry resulting 
in similar 
performance when 
diligently applied.

2 White BG Dformoso on https://github.com/dformoso/machine-learning-mindmap/blob/master/LICENSE



Machine learning literature is vast and often novel
with evocative names.  Don’t take it too seriously.
If you can imagine it, a machine learning algorithm can be invented to sort of do it

Fuzzy Probability Neural Networks, anyone?

1. “Fuzzy Number Neural Networks,” J.P. Dunyak and D. 
Wunsch, in Fuzzy Sets and Systems, 108, p. 49-58, 
November, 1999.

2. “Fuzzy Regression by Fuzzy Number Neural Networks,” 
J. Dunyak and D. Wunsch.  Fuzzy Sets and Systems, v. 
112, n. 3, p. 371-380, June 2000.

3. “A Theory of Independent Fuzzy Probability for System 
Reliability,” J. Dunyak, D. Wunsch, and I. Saad. IEEE 
Transactions on Fuzzy Systems, v.7, no. 3, p. 286-294, 
June 1999. 

Assistant professor seeking tenure

me
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Unsupervised learning: Integrating knowledge 
and discovery using deep learning

• Capturing clinical insights and 
knowledge by encoding drug-
pathway interaction for learning 
network input
• Identify disease-specific pathways
• Capture drug interaction (up and down 

regulation) with pathways and networks
• Encode interaction of drug with identified 

pathways for deep learning input
• Use deep learning to discover new 

relationships based on drug-
pathway interactions

4 Author | 00 Month Year Set area descriptor | Sub level 1

Deep learning using a biomolecular
network-based representation can 
reflect, illustrate and learn the 
relationships among drugs, disease-
related genes, therapeutic targets, and 
disease-specific signaling pathways as a 
system.
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Quantitative Clinical hrarmacology example: Artificial Neural Networks to predict 
the changes in tumour sizes

• Artificial NN model is able to predict the trends in SLD up to 78 weeks. 

• Baseline SLD, NLR at weeks 6 and 18, LDH at baseline, and age at baseline were identified as the most 

influential predictors for changes in longitudinal SLD. 



Platform trials will require integration and 
modeling of many rich clinical data sources   
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The Quantitative Clinical Pharmacology 
focus and challenge: 
Put “clinical” in machine learning

How do we move machine learning and 
other advanced modeling methods from 
“hypotheses generation” to making  
actionable development decisions based 
on real clinical data?

Based on my personal experience, leaving the machine learning  
sandbox when using clinical data is difficult and high risk.



Big Data
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Objectives
• Identify predictive biomarkers 

for disease subtyping
• Relate molecular genomic 

features to clinical phenotypes
• Create a generic computational 

framework
• Develop genomics knowledge 

base
• Omics data matched with 

clinical outcomes
• Develop a high-performance 

feature selection method 
• Identify predictive biomarkers 

for cancer subtyping, using ML 
methods

• Relate patient features to 
clinical phenotypes from EHR

• Validate methods 

Advancing precision medicine from integrating genomics and real-
world clinical phenotype evidence using ML and Bayesian modeling

Integration of genomics, clinical trial outcomes,  and real-world clinical phenotype 
evidence are expected to drive to reveal the full landscape of human cancer



What is machine learning really good for, anyway?
• Machine learning is GREAT for:

• Conference posters
• Journal articles (often with irreproducible results, including mine)
• Slide decks
• Corporate demos and dog-and-pony-shows
• Corporate awards and AZ postcards
• Getting funding in academic and corporate settings
• Getting tenure (certainly worked for me!)

• Machine learning is CHALLENGING when:
• “Real world” generalization is required
• New data from other sources must be analyzed
• The algorithm will actually be used
• Success in the real world can be measured

• I have personally participated in about $80M  of failed 
machine learning projects, including one which destroyed 
the company, spanning mid 1980s to 2015

• I have also participated in successful machine learning 
projects

• How did successful and failed projects differ?

I can never tell whether I 
am the dog or the pony
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Moving from ML algorithm development to real-world application
Goal:  Develop an assay algorithm to stratify patient risk in prostate cancer based on needle biopsies

Machine 
learning/ 
regularization/
data driven 
algorithm
step, including 
automated 
image 
decomposition. 
This would 
provide 
“robustness.”

Development and Clinical Validation of an In Situ Biopsy-Based Multimarker Assay for Risk Stratification in Prostate Cancer
Peter Blume-Jensen et al  Clinical Cancer Research, 2015

N=380
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Moving from ML algorithm development to real-world application
Goal:  Develop an assay algorithm to stratify patient risk in prostate cancer based on needle biopsies

Florescent labeling and ML for automatic image processing

10

The approach 
worked great in 
its FIRST clinical 
trial.



Moving from ML algorithm development to real-world application: What was challenging
Goal:  Develop an assay algorithm to stratify patient risk in prostate cancer based on needle biopsies

ResultApplication of 
signature

Automated image 
decomposition and 
signal level estimate 
using Definiens

Sample mounting, 
staining of 
multiple slides, 
fixing fluorescence

Scanning

Sample 
age 

(archival 
vs. 

freshly 
fixed)

Prolong 
Gold 

manufac
turing 
batch 

changed

Stability 
of Vectra 

Intelligent 
Slide 

Analysis 
Systems

Definiens
algorithm  
reproduci

bility

FFPE 
process 

variation

Signal processing methods 
were updated  post-hoc to 

try to “fix” interpretation of 
signature components, with 

new validation required.

Machine Learning components

Specification:
“Protects dyes from 
fading during imaging” 
= no spec at all! 11



Moving from ML algorithm development to real-world application: What went right 
Goal:  A Five-Gene Hedgehog Signature for Patient Preselection Tool for Hedgehog Inhibitor Therapy in Medulloblastoma

Result: patient is 
/is not candidate 
for treatment

Application of 
signature

TaqMan-based 
RT-PCR assays
gene expression 
profiling

Micro-
dissection of 
FFPE slide

RNA extraction
5 signature + 
control genes

ABI PCR system spec and calibration not sufficient for this use.
We needed to send a specific technician and calibration plate 
from Cambridge MA to Carlsbad CA to successfully transfer 

assay and have ML algorithm work.

FFPE process variation 
still poorly explored

Machine Learning component

12 Shou et al. Clinical Cancer Research 2015

What went right? The machine learning algorithm was 
DESIGNED as part of a system
• Clear intended use
• Clear risk-based requirements
• Followed a design process:

• POC/ feasibility 
• Intended use and requirements 
• Design (including input data requirements)
• Design verification

• ML design did not end at the POC dog-and-pony 
show!

This paper is actually reproducible!

Machine Learning component



Issues with lack of model interpretation 

• No interpretation = limited insight
• Common data and model issues are difficult to 

address using standard methods
• Confounding
• Measurement artifacts

Machine learning 
algorithms ALWAYS look 

behind the curtain, whether 
we want them to or not. 

And they don’t tell us what 
they find.
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The standard approach:  randomly divide data into 
training, validation, testing sets 

14

Choose ML 
algorithm structure

Confirm final model 
on testing set

Revise ML algorithm 
structure

Assess performance on 
the validation data set

Train on the training 
data set

Win award at dog-
and-pony-show

Often fail in practical 
application

Why do these machine learning 
algorithms often fail in application?
• Input data is not typical of the 

training/validation/testing data
The model fails to “generalize.”

• Algorithm result is used in an 
unexpected way

• Most ML algorithms reproduce an 
input/output map

• This map may not be that relevant 
to the question at hand

• Quality training data is not enough



We know how to fix this: engineer ML algorithms
(but you may not like the answer)

Take responsibility for the final 
application
• Stage 0:  Feasibility

• Play in the sandbox, but don’t stop there!
• Stage 1:  Identify critical design issues

• Intended use, risks, requirements
• Stage 2:  Design to requirements

• An algorithm is unlikely to meet a 
requirement not addressed during design

• Stage 3:  Verify requirements are met
• Stage 4:  Continue algorithm validation 

through its lifetime
• New data, new uses, new risks
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Famous CDRH waterfall plot
(actually taken from Canadian 

medical authorities)



Understand critical design issues
Stage 1:  Identify critical design issues
• Intended use –Not just “the algorithm models liver toxicity”

• What input data will be used, and what level of generalization is 
required?

• Data from new patients, clinical trials, clinical sites, different labs, different 
laboratory instruments, different reagent lots, ….

• Data collected over the next year, five years, ten years, forever?
• How will the output be used?

• Kill projects, influence team decisions, generate hypothesis to motivate 
other studies, select patients, … 

• Risks –What risks are associated with algorithm errors?
• To the project, the company, future patients, public health, ….
• No meaningful risks =  few benefits

• Requirements to meet intended use in context of risk
• Give appropriate answers for data from new patients, new laboratory 

sites, ….
• Have an error rate of less than ….
• Robust to ….
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Red flags:
• Preclinical 

biomarkers
• All innovative assays
• Biomarkers requiring 

testing at central 
labs –multiple trials?

• Samples collected 
for another purpose 
(ie. FFPEs, images,…)
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